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ABSTRACT 

Single error correction (SEC) codes 

are widely used to protect data stored in 

memories and registers. In some applications, 

such as networking, a few control bits are 

added to the data to facilitate their processing. 

For example, flags to mark the start or the 

end of a packet are widely used. Therefore, it 

is important to have SEC codes that protect 

both the data and the associated control bits. 

It is attractive for these codes to provide fast 

decoding of the control bits, as these are used 

to determine the processing of the data and 

are commonly on the critical timing path. In 

this brief, a method to extend SEC codes to 

support a few additional control bits is 

presented. 

The derived codes support fast 

decoding of the additional control bits and are 

therefore suitable for networking 

applications. Environmental interference and 

physical defects in the communication 

medium can cause random bit errors during 

data transmission. Error coding is a method 

of detecting and correcting these errors to 

ensure information is transferred intact from 

its source to its destination. Error coding is 

used for fault tolerant computing in computer 

memory, magnetic and optical data storage 

media, satellite and deep space 

communications, network communications, 

cellular telephone networks, and almost any 

other form of digital data communication. 

Error coding uses mathematical formulas to 

encode data bits at the source into longer bit 

words for transmission. 

The "code word" can then be 

decoded at the destination to retrieve the 

information. Different error coding schemes 

are chosen depending on the types of errors 

expected, the communication medium's 

expected error rate, and whether or not data 

retransmission is possible. Faster processors 

and better communications technology make 

more complex coding schemes, with better 

error detecting and correcting capabilities, 

possible for smaller embedded systems, 

allowing for more robust communications. 

I. INTRODUCTION 

Complex integrated circuits are necessary for 

networking applications because they need to 

handle data quickly [1]. Packets usually enter 

routers and switches by a single port, undergo 

processing, and then be routed to one or more 

output ports. Data are saved and sent across 

the device during this operation [2]. 

For networking devices like core routers, 

reliability is a crucial necessity [3]. 

Therefore, in order to identify and fix 

mistakes, the stored data needs to be 

safeguarded. Error-correcting codes (ECCs) 

are frequently used for this [4]. Single error 

correction (SEC) algorithms that can fix 1-bit 

mistakes are frequently utilised for registers 

and memory [5, 6]. 

One issue with data protection in networking 

applications is that each data block has a few 

control bits added to it to make processing 

easier. Flags are often used, for instance, to 

indicate an error (ERR), the start of a packet 

(SOP), or the end of a packet (EOP) [7]. The 

accompanying control logic is frequently on 

the crucial time route, and these flags are 

utilised to decide how the data is processed. 

If the control bits are secured by an ECC, 

they must be decoded before they may be 

accessed. The overall frequency may be 

limited by this decoding, which also adds 

latency. One choice is to use distinct ECCs to 

safeguard the data and control bits as distinct 
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data blocks. Let's use 128-bit data blocks 

with three control bits as an example. Next, 

an SEC code can use eight parity check bits 

to secure a data block, and another SEC code 

can use three parity check bits to protect the 

three control bits. Although this method 

minimises the latency by allowing data and 

control bits to be decoded independently, it 

necessitates additional parity check bits. 

Using a single ECC to safeguard the control 

and data bits is an additional choice. 

Compared to using independent ECCs, 

protecting 128 + 3 bits only requires 8 parity 

check bits, saving 3 bits. But in this instance, 

the control bit decoding is more difficult and 

takes longer. 

 
Fig. 1. Typical packet data storage in a 

networking application 

This brief suggests a way to add a few more 

control bits to an SEC code such that they are 

likewise protected. A portion of the parity 

check bits in the resultant codes can be used 

to decode the control bits. As a result, they 

are appropriate for networking applications 

and have a lower decoding time. A number of 

codes have been developed and put into use 

in order to assess the approach. They are then 

contrasted with current solutions in terms of 

area and decoding latency. 

II. DATA PROTECTION IN 

NETWORKING APPLICATIONS 

Data speeds ranging from 10 to 400 Gbit/s are 

supported by current networking technology, 

and terabit rates are anticipated soon [8]. 

Current ASICs generally employ clock rates 

between 300 MHz and 1 GHz, while FPGAs 

often use lower clock frequencies (less than 

400 MHz). On-chip packet data buses are 

broad, often ranging from 64 to 2048 bits in 

width, to accommodate these high data speeds 

[9], [10]. 

 
Fig. 2. Parity check matrix for a minimum-

weight SEC code that protects 128 data bits. 

 
Fig. 3. Parity check matrix for a minimum-

weight SEC code that protects 128 data and 3 

control bits. 

 
Fig. 4. Decoding of a control bit for single and 

independent SEC codes for data and control. 

(a) SEC code for both data and control bits. (b) 

Independent SEC codes for data and control 

bits. 

In order to adjust processing speeds, packet 

data must often be kept in RAMs, for example, 

in FIFOs. Delineating the packet boundaries is 

essential for storing packet data. In the most 

basic scenario, a single EOP marker can be 

used to identify each bus section. The 

subsequent packet is thus presumed to begin 

with the next valid section. In reality, 

designers also indicate the beginning of 

packets explicitly using a SOP marker. In 

packet processing, there are also several 

instances where a packet contains errors and 

needs to be discarded. An extra control signal 

(ERR) could be needed to identify such 

errored packets [7]. 

As stated in the introduction, storing the data 

and the markers in a single broad memory, as 

illustrated in Fig. 1, is appealing from the 

standpoint of error prevention. Consequently, 

comparatively fewer ECC bits are needed. 

When the data is read out, this method has an 

issue. Usually, a state machine that regulates 

the reading of the ensuing data receives the 

markers as input. For instance, the state 
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machine could have to read out a certain 

number of bytes of data (such as in a deficit 

round robin scheduler) or just one packet (up 

to an EOP). As indicated in red, the ECC 

correction logic and the state machine logic 

make up the important time route. In a 

conventional Hamming SEC code, the number 

of logic layers needed to decode the syndrome 

and carry out correction rises in tandem with 

the width of the data bus. Critical time on the 

signal channels associated with the adjustment 

of the markers that feed downstream state 

machines is a common observation made by 

circuit designers. The ability of unique ECC 

codes to quickly decode the limited amount of 

marker bits makes them very appealing. 

In some situations, the system can handle the 

packet data with a block size granularity. For 

instance, when the data is only being moved 

from one place to another, this would be the 

situation. On the other hand, knowing the 

packet data size with a byte precision is crucial 

in other situations. This would be the situation 

when checks are made for maximum transfer 

unit length or when bit rate is crucial (for 

scheduling and policing). It could be necessary 

to retain extra marker bits called EOPSIZE, 

which indicate how many of the bytes in the 

EOP transfer are legitimate, because the basic 

SOP and EOP markers are insufficient to 

determine the precise packet size. Keep in 

mind that any transfers made before the EOP 

are always deemed to be complete. Therefore, 

an extra 4 EOPSIZE bits could be needed on a 

128-bit data bus, increasing the total number 

of marker bits to 7 (SOP, EOP, ERR, and 

EOPSIZE[3:0]). 

 
Fig. 5. Proposed parity check matrix for a SEC 

code that protects 128 data and 3 control bits. 

III. PROPOSED METHOD TO 

DESIGN THE CODES 

The objective is to create SEC codes that can 

safeguard a data block together with a few 

control bits while allowing for low-latency 

decoding of the control bits, as was covered in 

the introduction. As previously stated, the size 

of the data blocks that need to be safeguarded 

is often a power of two, such as 64 or 128 bits. 

Seven parity check bits are required to secure a 

64-bit data block with an SEC code, but eight 

are sufficient to secure 128 bits. Since there 

are 27 = 128 potential syndromes in the first 

scenario, a few more control bits can be 

covered by the SEC code. This also applies to 

128 bits and, more generally, to an SEC code 

that safeguards a power-of-two data block. 

This implies that no extra parity check bits are 

needed to safeguard the control bits. This is 

more effective than employing two distinct 

SEC codes, one for the control bits and one for 

the data bits, which necessitates extra parity 

check bits. The primary issue with using an 

expanded SEC code is the complexity of the 

control bit decoding. Let's look at a 128-bit 

data block with three control bits to 

demonstrate this problem. The parity check 

matrix for the 128-bit data block's first SEC 

code is displayed in Fig. 2. To reduce 

encoding and decoding latency, this algorithm 

has a parity check matrix with balanced row 

weights and a minimal total weight [4]. To get 

a code that secures the extra control bits, it is 

simple to add three more data columns. For 

instance, the matrix shown in Figure 3, which 

has three extra columns (designated as control 

bits) added to the left, can be utilised. 

The issue is that in order to decode the three 

control bits, we must first compute the eight 

parity check bits and then compare the output 

to the control bits' columns. Compared to 

decoding an individual SEC code for the three 

control bits, this is far more complicated. 

Figure 4 illustrates the decoding of a bit in 

each scenario, demonstrating the variation in 

complexity. 

As previously said, our objective is to use a 

single SEC code for both data and control bits 

while making the decoding of the control bits 

simpler. The first step in doing so is to 

acknowledge that SEC decoding can 

occasionally be streamlined to merely examine 

a subset of the syndrome bits. The decoding of 

constant-weight SEC codes, as suggested in 
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[11], is one instance. Only the syndrome in 

this instance 

 
Fig. 6. Bit decoding of a control bit in the 

proposed SEC code. 

TABLE I 

MINIMUM NUMBER OF Pcd BITS FOR 

128 AND 256 DATA BITS 

 
It is necessary to check the bits that have a 1 in 

the parity check matrix's column. This makes 

decoding all bits easier, but it usually 

necessitates extra parity check bits. Since the 

control bits are frequently on the crucial route, 

the primary goal in our situation is to make 

decoding them easier. This may be 

accomplished by splitting the parity check bits 

into two groups: one that is utilised 

exclusively for the data bits and the other that 

is shared by the control and data bits. The first 

set of parity check bits simply has to be 

recalculated in order to decode the control bits. 

An example is a better way to explain this 

method. Let's look at a 128-bit data block with 

three control bits that are shielded by eight 

parity check bits. These eight bits are 

separated into two groups: one of five is used 

exclusively for the data bits, while the other 

group of three is shared by the control and data 

bits. The first three parity check bits can be 

given distinct values for each control bit in 

order to secure the control bits; the remaining 

parity check bits are not utilised in this way. 

Different values of the remaining five parity 

check bits can be used for each value, and the 

remaining values are utilised to secure the data 

bits. Three of the eight possible values in the 

first set of bits in this example are utilised for 

the columns that match the control bits. There 

are five values left that can be utilised to 

safeguard the data bits. Each of the five values 

on the first set of parity check bits can be 

coded with one of the five bits in the second 

group. Thus, the maximum number of data bits 

that may be safeguarded is 5 × 32 = 160. Since 

the appropriate column would have a weight 

of zero or one, the zero value on the first group 

cannot be joined with another zero or a single 

one on the second group, so the number is 

really lower. In any event, protecting 128 data 

bits is simple. 

 
Fig. 7. Proposed parity check matrix for a SEC 

code that protects 128 data and 7 control bits. 

Figure 5 illustrates the parity check matrix of 

an SEC code that was obtained using this 

technique. The additional control bits are 

represented by the first three columns. The 

latter five rows exclusively safeguard the data 

bits, whereas the first three rows share the data 

and control bits. The two sets of parity check 

bits are likewise divided. It is evident that the 

first three parity check bits only need to be 

recalculated in order to decode the control bits. 

Additionally, certain data bits also use the zero 

value on these three bits. This indicates that 

the first three parity check bits may be 

recalculated without those bits. 

Fig. 6 shows the decoding of one of the control 

bits. As can be seen from the left portion of 

Fig. 4, the circuitry is much simpler than that 

of a conventional SEC code. The experimental 

findings in the next section will support this. 

More than three control bits can be protected 

using this technique. Let's assume for the 
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moment that we need to use p parity check bits 

to secure d data bits and c control bits. P is 

then separated into two categories, pcd and pd. 

Control and data bits share the first group, but 

only the data bits utilise the second. The 

following formula can be used to determine 

how many data bits this technique can protect. 

There are 2P cd − c combinations of the first 

group that can be utilised to secure the data 

bits. A total of (2P cd − c) · 2P d can be 

obtained by using up to 2P d values for each of 

those. However, pd + 1 should be deducted 

since the combinations of the second group 

with weight zero or one cannot be utilised for 

the zero value. Likewise, the zero value on the 

second group cannot be utilised for the pcd 

values with weight one on the first group since 

the resulting column would have weight one. 

As a result, pcd must also be deducted, 

resulting in (2P cd − c) · 2P d − (pd + 1) − pcd. 

This is how many data bits, on top of the 

control bits, can be secured. To be able to 

secure the block of data bits with the same 

number of parity check bits, the PCD must be 

increased in tandem with the number of 

control bits. Table I provides examples for 128 

and 256 data bits. The minimal value should 

be utilised since increasing pcd complicates 

control bit decoding. 

TABLE II 

ASIC CIRCUIT AREA (μM2) FOR 3 

ADDITIONAL CONTROL BITS 

 
TABLE III 

ASIC CIRCUIT DELAY (NS) FOR 3 

ADDITIONAL CONTROL BITS 

 
Fig. 7 illustrates the parity check matrix used 

to safeguard 128 data and 7 control bits. It is 

evident that in this instance, the first group 

requires more bits, which makes the control bit 

decoding a little more difficult. Instead of the 

eight bits needed for a conventional SEC code, 

the control bits can still be deciphered using 

just four syndrome bits. Lastly, it should be 

mentioned that in the event of multiple 

mistakes, the suggested technique raises the 

risk of miscorrection for control bits. This is 

because just a portion of the bits are used to 

decode the control bits. 

IV. EVALUATION 

The suggested system has been developed for 

64, 128 and 256 data bits while taking into 

account three and seven more control bits in 

order to evaluate its merits. The codes shown 

in Figures 5 and 7 are the same as those used 

for the case of 128 data bits. The 

minimumweight SEC codes with balanced row 

weight (shown in Fig. 3 for the case of 128 

data bits and 3 control bits) are compared to 

the encoders and decoders. The smallest 

decoding latency for a conventional SEC code 

ought to be offered by these codes. 

All of the designs have been built in HDL and 

mapped to a 45-nm ASIC library using 

Synopsis DC in order to assess the suggested 

codes for an ASIC implementation [12]. As 

the primary design objective for the decoders, 

the synthesis was set up to focus most of its 

efforts on minimising latency on the control 

bits. The tool was set up to minimise delay on 

all bits for the encoders. The suggested codes 

and the minimum-weight codes were subjected 

to the same synthesis limitations in every 

instance. Both the delay and the circuit area 

have been assessed. 

TABLE IV ASIC CIRCUIT AREA (μM2) 

FOR 7 ADDITIONAL CONTROL BITS 

 
TABLE V ASIC CIRCUIT DELAY (NS) 

FOR 7 ADDITIONAL CONTROL BITS 
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Tables II and III provide the outcomes for the 

scenario with three more control bits. The 

findings for the minimum-weight SEC codes 

are likewise included in the tables. In this 

instance, there is a 12%–18% decrease in the 

control bits' decoding latency. This 

demonstrates how the suggested plan could 

shorten the critical path. Sometimes somewhat 

lower, sometimes slightly higher, the circuit 

area is comparable to the minimum-weight 

SEC codes. 

The decoding latency for the data bits is 

affected by the suggested codes. For the 

majority of word sizes, the additional delay on 

data bits is substantial for the decoders. 

However, as the control bits usually dictate the 

crucial time route, the main design objective is 

to decrease the decoding delay of the control 

bits, as was covered in the introduction. 

Tables IV and V provide the outcomes for the 

scenario with seven control bits. The circuit 

space needed for the encoder and decoder in 

the suggested codes is comparable to that of 

the minimum-weight codes. The data bits 

decode more slowly in terms of delay. 

However, the control bits' decoding latency 

can be decreased by around 9% to 11% using 

the suggested codes. Compared to the situation 

with three control bits, this decrease is less. 

This is to be expected when the decoder 

complexity rises along with the amount of 

parity bits (pcd) utilised to decode the control 

bit (from three to four). As a result, as the 

number of control bits rises, the advantages of 

the suggested method diminish. 

In conclusion, the suggested technique may be 

applied to decrease the control bits' decoding 

time, particularly when there aren't many 

control bits. 

 

 

V. CONCLUSION AND FUTURE 

WORK 

A technique for creating SEC codes that can 

safeguard a data block and a few extra control 

bits has been provided in this short. The 

derived codes are created to allow the control 

bits to be decoded quickly. The derived codes 

don't need more memory or registers since 

they contain the same amount of parity check 

bits as the current SEC codes. A number of 

codes have been put into place and contrasted 

with minimum-weight SEC codes in order to 

assess the advantages of the suggested plan. 

Applications where a few control bits are 

introduced to each data block and the control 

bits must be decoded quickly can benefit from 

the suggested codes. On certain networking 

circuits, this is the case. In other situations, 

such as in some finite-state machines, where 

the critical delay impacts certain bits, the 

approach may also be helpful. Arithmetic 

circuits are another example, where the least 

important bits often have the critical route. 

Consequently, the overall circuit speed may be 

raised by decreasing the delay on those bits. 

An intriguing area for further research is the 

applicability of the suggested technique to 

those applications outside of networking. More 

sophisticated ECCs that can fix multiple bit 

faults could be able to use the concept of 

changing the code matrix to allow for quick 

decoding of a few bits. Lastly, by adding one 

or two more parity check bits, the system may 

be expanded to include more control bits. This 

would offer a way to do quick decoding 

without utilising two different codes for the 

control and data bits. 
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